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ABSTRACT

The Flash Flood and Intense Rainfall (FFaIR) Experiment developed within the Hydrometeorology

Testbed (HMT) of the Weather Prediction Center (WPC) is a pseudo-operational platform for participants

from across the weather enterprise to test emerging flash flood forecasting tools and issue experimental

forecast products. This study presents the objective verification portion of the 2017 edition of the experiment,

which examines the performance from a variety of guidance tools (deterministic models, ensembles, and

machine-learning techniques) and the participants’ forecasts, with occasional reference to the participants’

subjective ratings. The skill of the model guidance used in the FFaIR Experiment is evaluated using

performance diagrams verified against the Stage IV analysis. The operational and FFaIRExperiment versions

of the excessive rainfall outlook (ERO) are evaluated by assessing the frequency of issuances, probabilistic

calibration, Brier skill score (BSS), and area under relative operating characteristic (AuROC). An ERO

first-guess field called the Colorado State University Machine-Learning Probabilities method (CSU-MLP) is

also evaluated in the FFaIR Experiment. Among convection-allowing models, the Met Office UnifiedModel

generally performed optimally throughout the FFaIR Experiment when using performance diagrams (at the

0.5- and 1-in. thresholds; 1 in. 5 25.4mm), whereas the High-Resolution Rapid Refresh (HRRR), version 3,

performed best subjectively. In terms of subjective and objective ensemble scores, the HRRR ensemble

scored optimally. The CSU-MLP overpredicted lower risk categories and underpredicted higher risk cate-

gories, but it shows future promise as an ERO first-guess field. The EROs issued by the FFaIR Experiment

forecasters had improvedBSS andAuROC relative to the operational ERO, suggesting that the experimental

guidance may have aided forecasters.

1. Introduction

a. Background

Flash flooding is defined as a rapid and extreme flow

of high water into a normally dry area, or a rapid water-

level rise in a stream or creek above a predetermined

flood level within 6 h of the causative event (NOAA

2012). Between 2015 and 2017, flash flooding has resulted

in more fatalities than lightning, hail, tornadoes, and

straight-line wind damage from thunderstorms combined

(NWS 2017). Between October 2015 and October 2016,

there have been approximately $19 billion in losses

from flooding disasters over the contiguousUnited States

(CONUS; Novak 2017).

Significant predictability issues remain with potential

flash flooding events due to challenges associated with

quantitative precipitation forecasts (QPF) during the

warm season (Yu et al. 2013; Clark et al. 2016; Gowan

et al. 2018), which are likely driven by smaller-scale

forcing when compared to the cool season (Fritsch and

Carbone 2004; Sukovich et al. 2014). Unfortunately, the

treatment of flash flooding is inconsistent beginning with

the definition of flash flooding and continuing into the

forecasting, reporting, and verification of these events

(Barthold et al. 2015). For instance, there are a variety of

disparate forecast products issued by National Weather
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Service offices to alert the public to different types of

flood risk. Adding to the complexity, the relationship

between flood response and QPF is not linear and de-

pends on complex upstream basin characteristics unique

to that locality. Ideally, the hydrologic component to

flash flooding should be better integrated into the

forecast process when making a flash flood forecast

(Gochis et al. 2015; Gourley et al. 2017; Li et al. 2017).

The Weather Prediction Center (WPC) Flash Flood

and Intense Rainfall (FFaIR) Experiment allows for

the exploration of new flash flooding products with the

future goal of utilizing a more integrated system.

b. Motivation

During the FFaIR Experiment, participants from

across the weather enterprise can work together to ex-

plore the utility of emerging model guidance and tools

for improving flash flood forecasts in a real-time pseudo-

operational environment. The FFaIR Experiment was

developed in 2013 within WPC’s Hydrometeorology

Testbed (HMT) and is typically held for four weeks

from mid-June to mid-July (Barthold et al. 2015). Dur-

ing the FFaIR Experiment, aWPC forecaster and 10–12

participants (consisting of meteorologists, hydrologists,

developers, and researchers) utilize a variety of experi-

mental statistical and dynamical products to generate

experimental forecasts. Historically, the majority of

guidance evaluated and utilized in the FFaIRExperiment

are experimental dynamical models from a variety of

agencies [e.g., Center for Analysis and Prediction of

Storms (CAPS)Geophysical FluidDynamics Laboratory

(GFDL), Environmental Modeling Center (EMC), and

Earth System Research Laboratory (ESRL)]. During

the experiment, the participants refrain from looking at

WPC operational forecasts and largely restrict their

guidance to the products shown in Table 1, but they are

free to analyze current in situ and remote observations.

As mentioned in section 1a, the flash flood forecasting

paradigm needs a consistent and reliable flash flood

database for verification. This is particularly crucial for

WPC’s excessive rainfall outlook (ERO), which in its

current form is a probabilistic forecast of precipitation

exceeding flash flood guidance (FFG; Schmidt et al.

2007) within 40km of a point over the CONUS. In

previous FFaIR Experiments (Barthold et al. 2015;

Perfater and Albright 2017), instances of rainfall ex-

ceeding FFG created by River Forecast Centers was

used as a proxy for flash floods. FFG provides an esti-

mate for the amount of rain over an area and time period

that may cause small streams to flood, given local soil

moisture and streamflow conditions. However, FFG is

subject to error and may not properly capture the

complexity of observed flooding (Clark et al. 2014). No

single source of flooding observations can be considered

fully comprehensive across all of CONUS (Herman and

Schumacher 2018c). For instance, relying solely on ob-

servations from National Weather Service local storm

reports can result in missed observations and inaccurate

reporting associated with the difficulty of separating

regular and flash floods (Barthold et al. 2015; Gourley

et al. 2013).

To address some of the inconsistencies identified in

Barthold et al. (2015), WPC is taking a holistic approach

to the flash floods paradigm in the 2017 FFaIR Experi-

ment by looking at a variety of atmospheric and hy-

drologic models, statistical models, and verification

methods. The future core of the Unified Forecast Sys-

tem known as the GFDL Finite-Volume Cubed-Sphere

Dynamical Core (FV3; Lin and Rood 1997; Lin 1997)

has been introduced to the FFaIR Experiment for

evaluation. In addition, emerging hydrologic guidance

from the National Water Model (Cohen et al. 2018) and

the Flooded Locations and Simulated Hydrographs

(Gourley et al. 2017) system has been evaluated by

participants. For the first time in the FFaIRExperiment,

an ERO first-guess field is explored called the Colorado

State University Machine-Learning Probabilities method

(CSU-MLP). Also new to the 2017 FFaIR Experiment,

TABLE 1. Datasets used in the objective verification portion of the 2017 FFaIR Experiment.

Data name Provider Data type Total members Cycles used Period evaluated

Total sample

size

NAM Nest EMC Model 1 0000 UTC Day 2 35

FV3-GFDL GFDL Model 1 0000 UTC Days 2 and 3 25

FV3-GFS EMC Model 1 0000 UTC Days 2 and 3 26

FV3-CAPS OU/CAPS Model 1 0000 UTC Days 2 and 3 18

UM-Oper. Met Office Model 1 0000 UTC Days 2 and 3 21

HRRR-Exp ESRL/GSD/EMC Model 1 1200 UTC Day 2 19

HREFv2 EMC Ensemble 8 0000 UTC Day 1 (1800–0000 UTC) 32

SSEFx OU/CAPS Ensemble 11 0000 UTC Day 1 (1800–0000 UTC) 16

HRRRe ESRL/GSD Ensemble 9 0000 UTC Day 1 (1800–0000 UTC) 24

CSU-MLP CSU First-guess field 1 — Days 2 and 3 40
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additional proxies and observations for flooding are

being explored with the goal of creating a more com-

prehensive verification.

This study presents an overview of the objective

verification system first established in the FFaIR 2017

Experiment. The primary focus of this study will be on

objectively verifying the forecast products issued by

the FFaIR Experiment participants, with a secondary

focus on the deterministic and ensemble atmospheric

models and statistical tools. The objective verification

of forecaster-issued products allows for a comparison

of FFaIR products with WPC operational products.

When appropriate, the objective ratings will be com-

pared to the participants’ subjective ratings.

Section 2 details the data and methods, including the

experimental guidance, issued forecast products, and

verification used in the FFaIR Experiment. Section 3

presents the verification results, with an emphasis on

differences in skill and bias between different forecast

products and experimental guidance. Section 4 briefly

summarizes the important lessons learned in the 2017

FFaIR Experiment and discusses future directions for

the experiment. The appendix contains a list of the ac-

ronyms used in this paper.

2. Data and methods

In 2017, the FFaIR Experiment was conducted for

four weeks spanning from Monday 19 June to Friday

21 July 2017, with no experiment running the week of

Monday 3 July 2017. This year featured a massive multi-

agency collaboration effort between WPC and CAPS,

GFDL, the Met Office, ESRL-Global Systems Division

(GSD), EMC, CSU, Office of Water Prediction, Mete-

orological Development Laboratory, National Severe

Storms Laboratory, andUniversity of Oklahoma. In this

paper, we focus mostly on the products that could be

objectively verified. Details of the products used, col-

laborative efforts, forecasts issued, and verification ef-

forts are detailed below.

a. Experimental model guidance

A variety of dynamical and statistical guidance is

evaluated during the FFaIR Experiment for the day 1

(valid 1200 UTC on the current day to 1200 UTC 1 day

into the future), day 2 (valid 1200 UTC 1 day into the

future to 1200 UTC 2 days into the future), and day 3

(valid 1200 UTC 2 days into the future to 1200 UTC

3 days into the future) forecast periods. The 24-h accu-

mulated QPF from all deterministic models are verified

for days 2 and 3 (Table 1). Deterministic guidance in-

cludes the FV3-GFDL (uses GFDL microphysics), the

FV3-Global Forecast System (FV3-GFS; uses GFS

physics), FV3-CAPS (uses Thompson microphysics),

and Met Office UnifiedModel Operational (UM-Oper.),

all initialized at 0000 UTC preceding day 1. In addition,

the 24-h QPF from the 1200 UTC experimental High-

Resolution Rapid Refresh (HRRR-Exp) and the North

American Mesoscale Forecast System model nest

(NAM nest) are evaluated for day 2 only, since these

models do not extend out to the day 3 time period.

Additional details for the deterministic guidance, in-

cluding sample size of model runs throughout the FFaIR

Experiment, are shown in Table 1.

In addition to the deterministic guidance, ensembles

are verified over the day 1 6-h QPF between 1800 and

0000 UTC for the High-Resolution Ensemble Forecast,

version 2 (HREFv2), experimental Storm-Scale En-

semble Forecast (SSEFx), and experimental High-

Resolution Rapid Refresh Ensemble (HRRRe). The

6-h QPF evaluated consists of a 50% blend of the

probability-matched mean and the conventional mean

(i.e., the arithmetic mean) from the ensemble. The

probability-matched mean (Ebert 2001) sets the prob-

ability distribution function of the ensemble mean equal

to that of the collective ensemblemembers. The localized

probability-matched mean (Perfater and Albright 2017;

Blake et al. 2018) calculates the probability-matched

mean over small patches of the domain and then

applies a Gaussian smoother to the data. The localized

probability-matched mean provides many of the advan-

tages of the probability-matched mean while retaining

small-scale structures that may be of meteorological in-

terest to forecasters. During the 2016 FFaIRExperiment,

the probability-matched mean exhibited good spatial

structure but produced values that were too high, while the

conventional mean produced overly smoothed values that

were too low (Perfater andAlbright 2017). Combining the

probability-matched mean and conventional mean into a

blended mean preserved the best aspects of both means.

New to the 2017 FFaIR Experiment, the CSU-MLP

is a machine-learning random-forest technique trained

on 11 years of Global Ensemble Forecast System

reforecasts to predict probability of QPF exceeding the

1-yr average recurrence intervals (ARIs; Herman and

Schumacher 2018a,b).While the 1-yr ARI is not entirely

consistent with the current operational WPC ERO

definition of quantitative precipitation estimates ex-

ceeding FFG, ARIs are becoming an important flooding

proxy as detailed in section 2c. The CSU-MLP technique

is used to generate first-guess fields for days 2 and 3. This

study defines a ‘‘first-guess field’’ as a tool that can be

used as a starting point to aid forecasters in the creation

of a forecast product. The performance of the first-guess

fields are subjectively evaluated by forecasters and

objectively evaluated using flooding observations and
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proxies described in section 2c. Participants were

asked to subjectively rank different products on a

scale from 1 (poor) to 10 (great) by writing their score

on a whiteboard and presenting it to the scorekeeper.

Participants did not have to be present for the entire

week to participate.

b. Forecast issued products in the FFaIR experiment

WPC participants used the deterministic and ensem-

ble guidance, first-guess fields, and additional guidance

(e.g., National Water Model) to create several proba-

bilistic forecasts. Specifically, the forecasters issued a

day 1 6-h probability of flash flooding forecast valid 1800

to 0000 UTC, a day 2 24-h experimental ERO, and a day

3 24-h experimental ERO. This paper will focus on the

objective verification of the day 2 and day 3 experi-

mental ERO, with comparisons with the operational

EROs issued at 0900 UTC.

The operational ERO was defined until 13 October

2017 as the probability of QPF exceeding FFG at a

point, while the experimental ERO was defined as the

probability of flooding rains occurring within 40km of a

point. The ERO probabilities used in the FFaIR Ex-

periment are marginal 5 5%–15%, slight 5 15%–30%,

moderate 5 30%–50%, and high 5 50%–100%. These

40-km ERO probability thresholds are derived from a

1.5-yr retrospective verification of the operational ERO

extrapolated to a 40-km radius (Erickson and Nelson

2018). Hence, the ERO probability categories used in

the FFaIRExperiment can be applied to the operational

ERO if a 40-km-neighborhood radius is used. Note that

the definition of the operational ERO was changed to a

40-km radius effective 13 October 2017.

c. Verification

As discussed in section 1b, no single flooding dataset

can be considered fully comprehensive to sampling all

flooding events. Starting in 2017, the FFaIR Experiment

began addressing the inconsistency in flash flood reports

by creating a comprehensive flash flood verification

dataset consisting of flooding observations from local

storm reports (LSR) and U.S. Geological Survey river

gaugemeasurements. However, LSRs exhibit significant

spatial discontinuity due to regional reporting biases and

U.S. Geological Survey river gauge observations only

sample a very small number of possible flooding loca-

tions (Gourley et al. 2013; Clark et al. 2014).

In an attempt to capture flash flooding occurrences

that may be missed with traditional observations, grid-

based flooding proxies are computed by examining in-

stances of Stage IV analysis exceeding FFG. The Stage

IV analysis is a near-real-time product generated by

River Forecast Centers by utilizing radar precipitation

estimates and rain gauges and includes some bias cor-

rection and manual adjustment of data (Nelson et al.

2016). A 5-km CONUS mosaic of FFG is generated at

WPC from the original FFGs created by regional River

Forecast Centers (Barthold et al. 2015). Section 1b

briefly discusses the assumptions that go into calculating

the FFG product. Clark et al. (2014) found relatively

slow skill values between FFG and LSRs, perhaps due to

reporting biases in LSRs, with slightly higher values

comparing FFG to U.S. Geological Survey river gauge

observations.

Finally, instances of Stage IV analysis exceeding 5-yr

ARI are also considered as a flooding proxy. Instances

of exceeding the 1-, 2-, and 10-yr ARI are also analyzed

(not shown), but the 5-yr ARI subjectively aligns best

with LSRs and captures 80% of all floods (Lincoln and

Thomason 2018). The combination of all flooding ob-

servations and observation proxies (FFG and ARI ex-

ceedances) are referred to as the Unified Flooding

Verification System (UFVS) within WPC. A detailed

cross verification of all the datasets within the UFVS is

beyond the scope of this study and likely very difficult to

perform given reporting biases, but their combination is

meant to capture all potential flooding occurrences that

are likely missed by using one or two datasets. An ex-

ample of a participant issued ERO with UFVS verifi-

cation is shown in Fig. 1 valid between 1200 UTC

23 June and 1200 UTC June 24 in 2017. This was a sig-

nificant flooding event with the experimental ERO be-

ing displaced slightly south of where the main flooding

occurred.

The majority of verification performed at WPC is

accomplished by using the Model Evaluation Tools,

version 6.0 (METv6.0), in conjunction with a series of

Python programming language wrappers (Brown et al.

2009). MET is used to evaluate the deterministic- and

probabilistic-model guidance, flooding observations and

proxies, and the forecast products issued in the FFaIR

Experiment. Most of the plots produced in this study use

MET output and are plotted in Python.

The skill of the deterministic and blended mean en-

semble QPF forecasts are displayed using Roebber

performance diagrams (Roebber 2009). The perfor-

mance diagrams are a convenient way to simultaneously

display probability of detection, false-alarm ratio, fre-

quency bias (FB), and critical success index (CSI;

Perfater and Albright 2017, their Fig. 5). Performance

diagrams are computed for multiple precipitation

thresholds, although the most relevant thresholds are

presented in this study.

Experimental and operational ERO issuance proba-

bility is analyzed spatially throughout the experiment to

determine the most active regions within CONUS and
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highlight differences between the two types of forecasts.

Since the ERO is a probabilistic forecast, calibration is

assessed by computing the average fractional coverage

of FFG exceeding Stage IV and all UFVS data within

40km of a point for each probabilistic threshold (e.g.,

marginal, slight, moderate, and high). Fractional cov-

erage for each ERO probabilistic threshold is also

computed for the CSU-MLP.

Probabilistic forecast skill for the EROs and CSU-

MLP is assessed by computing Brier scores (BS) and

bulk area under the relative operating characteristic

(AuROC). BS is a negatively oriented error metric and

is analogous to mean-square error for probabilistic

values while AuROC measures probability of detection

versus false-alarm ratio with higher values representing

more skill (Wilks 2011). Brier skill scores (BSS) are used

to assess any potential improvement in probabilistic skill

of the experimental ERO over the operational ERO

throughout the FFaIR Experiment.

3. Results

a. Dynamical model verification

Performance diagrams for all deterministic-model

24-h accumulated QPF (i.e., NAM nest, FV3-GFDL,

FV3-GFS, FV3-CAPS, UM-Oper., and HRRR-Exp)

are plotted in Fig. 2 for days 2 and 3 exceeding both

the 0.5-in. (12.7mm) and 1-in. (25.4mm) thresholds.

In the performance diagrams, unbiased forecasts fall

along the 1:1 line, while optimal forecasts approach unity

in the top-right corner of the figure (Roebber 2009).

All models exhibit a dry bias at the 0.5-in. threshold for

days 2 and 3, with the FV3-CAPS exhibiting the greatest

dry bias on day 2 (FB 5 0.64) and the FV3-GFDL ex-

hibiting the greatest dry bias on day 3 (FB5 0.65). There

is greater model bias variability at the 1-in. threshold

with theHRRRhaving the smallest day 2 dry bias (FB5
0.93) and the FV3-GFS having the greatest dry bias (day

2 FB5 0.40 and day 3 FB5 0.50). These results suggest

that all models underpredict precipitation at both the

0.5- and 1-in. threshold. Participants generally viewed

the FV3-GFS favorably, particularly for capturing the

location of heavier precipitation, although it was noted

that the model frequently underpredicted the higher

amounts (Perfater and Albright 2017). In terms of CSI,

the UM-Oper. exhibited the highest CSI for all days

and thresholds, except for day 3 at the 0.5-in.

threshold where the FV3-GFS was slightly higher.

The HRRR-Exp (FV3-GFDL) had the lowest CSI

for QPF exceeding 0.5 in. on day 2 (day 3), while the

FV3-GFS had the lowest CSI for days 2 and 3 QPF

exceeding 1 in.

The objective and subjective verification differs

slightly when comparing CSI directly with the average

ratings from the forecast participants. For instance, in

the subjective verification boxplots (Figs. 3a,b), the

HRRR-Exp performed best on day 2 (Fig. 3a) while

the UM-Oper. performed best objectively on day 2

(Figs. 2a,b). On day 3, the UM-Oper. performed best

objectively at 1 in. and close to best at 0.5 in. (Figs. 2c,d),

which is consistent with the subjective results on day 3

(Figs. 2c,d). Participants commented that theHRRR-Exp

FIG. 1. The experimental ERO issued by participants valid between 1200 UTC 23 Jun and

1200UTC 24 Jun 2017. Green dots denote instances of flooding observations and proxies in the

UFVS with a 40-km-neighborhood radius applied.
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did well capturing the precipitation pattern over CONUS

(Perfater andAlbright 2017), whichmay not be reflected

in the objective verification scores. The median of the

FV3-CAPS generally performed the worst of all sub-

jective evaluations for both days 2 and 3 (Figs. 3a,b),

while objective verification results exhibited average

performance (Fig. 2). Given the sample size (16–40 runs;

Table 1) of the verification, statistical significance is

difficult to deduce. Nonetheless, these results can be

used to infer potential utility of the experimental guid-

ance related to flash flooding forecasting andQPF during

an active period. For instance, participants in the FFaIR

Experiment mentioned that the FV3-CAPS generally

did not produce enough precipitation and provided

little utility (Perfater and Albright 2017). In several

cases, the deterministic objective verification corrob-

orates and quantifies the subjective evaluation from the

participants.

Figure 4 shows the blended mean performance dia-

grams for the three ensembles evaluated in the FFaIR

Experiment: the HREFv2, SSEFx, and the HRRRe.

In terms of bias, the HREFv2 exhibits a dry bias at the

0.5-in. QPF threshold (FB 5 0.60) and 1-in. threshold

(FB 5 0.30), while the HRRRe exhibits the smallest

dry bias at both thresholds (FB 5 0.85 at 0.5 in. and

FB 5 0.94 at 1 in.). The SSEFx also exhibits a dry bias

generally in between theHRRRe andHREFv2.Despite

the differing biases, the HREFv2 and HRRRe have

similar CSI values for both thresholds, while the SSEFx

exhibits reduced skill. Conversely, the SSEFx has the

FIG. 2. Deterministic-model 24-h QPF performance diagrams for (a) day 2 exceeding 0.5 in., (b) day 2 exceeding

1 in., (c) day 3 exceeding 0.5 in., and (d) day 3 exceeding 1 in. Models shown are the NAM nest (blue), FV3-GFDL

(magenta), FV3-GFS (green), FV3-CAPS (cyan), UM-Oper. (red), and HRRR-Exp (orange).
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highest rated average subjective score (6.73), with the

HRRRe second (6.57), and the HREFv2 last (6.02;

Fig. 3c).

The CSI values from Figs. 2 and 4 are very low and are

generally consistent with the top 1% of all WPC QPF

forecasts for July (Sukovich et al. 2014; their Fig. 8e).

These results highlight that subjective and objective

scores can differ, with the human eye recognizing con-

vective structure and biases in the spatial patterns that

remain ignored with grid-to-grid objective verification.

Therefore, a human forecaster can still find value in a

model forecast with a low CSI that produced displaced

convection of a similar convective mode, intensity, or

duration relative to what is observed. However, sub-

jective ratings can vary fromperson to person depending

on what object attributes and locations the forecasters

value most in a QPF forecast. When evaluating the

ensembles, participants were asked to subjectively rate

the ensembles over a varying subdomain of CONUS,

while objective verification was performed over all of

CONUS. Nonetheless, inconsistencies between objec-

tive and subjective ratings is still useful feedback to

model developers to address potential issues. For in-

stance, model conditional biases related to geographical

region or convective mode may not be captured by

standard bulk verification metrics but noticed by fore-

casters. In general, the ensembles analyzed in this study

were rated highly both subjectively and objectively, and

the participant reactions to the ensembles were gener-

ally positive (Perfater and Albright 2017).

b. Average occurrence fields for the FFaIR
experimental forecasts and first-guess products

The average spatial issuance probabilities of each

ERO probabilistic risk category is analyzed during the

2017 FFaIR Experiment for the operational ERO, ex-

perimental ERO, and CSU-MLP. To compare the CSU-

MLP to the categorical ERO field, the raw probability

field is converted to the FFaIR Experiment defined risk

categories. Note that the CSU-MLP is used as a first-

guess field in the FFaIRExperiment while the EROs are

human forecasts thatmay have considered theCSU-MLP

as input, so a one-to-one comparison may not be partic-

ularly equitable. In addition, theCSU-MLP is designed to

predict the probability of precipitation exceeding ARIs,

rather than FFG or the entire UFVS (Herman and

Schumacher 2018a). However, this study presents them

side by side since they are all in a similar format.

The average issuance probability of predicting mar-

ginal risk for all three products is shown in Fig. 5. Both

the operational ERO (Fig. 5a) and the FFaIR experi-

mental ERO (Fig. 5b) highlight three active areas: the

mesoscale convective systems (MCS) in the Midwest,

FIG. 3. Boxplot of the subjective verification results for the

(a) day 2 and (b) day 3 deterministic models and the (c) day 1 1800–

0000 UTC ensembles. Red symbols denote outliers, and the num-

bers below each boxplot show the total number of ratings.
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the convection and tropical activity in the Southeast,

and the Southwest monsoon activity. The abundance

of marginal issuances in the Southeast is the result of

Tropical Storm Cindy during the first week of the ex-

periment, with lingering convection for the second, third,

and fourth weeks. TheMidwestMCS activity is persistent

throughout the experiment, whereas the Southwest

monsoon began in the latter half of the experiment.

Both the operational and experimental EROs high-

light the three ‘‘hot spots’’ mentioned earlier, although

the fractional coverage of the experimental EROs is

over 2 times the size (;207.7% greater) of the opera-

tional EROs. Of particular note, the experimental

ERO increases the average issuance probabilities of

marginal in portions of the Southeast and Southwest

United States by over 4 times (e.g., certain locations

that had two marginal issuances in the operational

ERO had eight or greater issuances in the FFaIR

ERO.) The CSU-MLP (Fig. 5c) is fairly similar to the

operational ERO in the Midwest but shows much

greater marginal risk probabilities in the Intermountain

West, particularly in New Mexico and Colorado. In ad-

dition, CSU-MLP average issuance probability values are

much lower in the Southeast compared to both ERO

forecasts. These differences are noted by the FFaIR Ex-

periment participants, particularly with regard to the

large positive difference in the CSU-MLP from New

Mexico to eastern Montana during monsoonal activity

(Perfater and Albright 2017). The lower CSU-MLP

values in the Southeast are likely caused by the greater

abundance of FFG exceedances compared to ARI ex-

ceedances in that region.

Similar to Fig. 5, Fig. 6 shows the slight issuance

probabilities for both EROs and the CSU-MLP. The

three major marginal risk regions are highlighted in the

slight category, with a fourth region stretching from

Ohio to the central Appalachians. This region had sev-

eral slight issuances from Tropical Storm Cindy and

remnant MCS activity propagating in from theMidwest.

The experimental ERO (Fig. 6b) slight risk covers over

2 times the size (;206.9%) relative to the operational

ERO (Fig. 6a), with the greatest issuance frequency in

the Midwest. The CSU-MLP (Fig. 6c) deviates greatly

from the EROs, with the majority of slight issuances

occurring over New Mexico, and very few issuances

elsewhere in CONUS.

Issuances of the moderate risk are far rarer, occurring

only with Tropical Storm Cindy and the most extreme

MCS events extending from the Midwest to the Gulf

Coast (Figs. 7a,b). Moderate risks are issued more

abundantly with the experimental EROs and exhibited

an average fractional coverage of almost 4 times as great

an area (;394.9%) as the operational version. The

CSU-MLP has one moderate issuance in the Florida

Panhandle and a few issuances in southwestern New

Mexico, but it fails to highlight any similar regions

compared to the ERO products. Further investigation

into the frequent prediction of high probabilities in

New Mexico reveals that it is related to very frequent

exceedance of ARI thresholds in the Stage IV pre-

cipitation analysis used to train the CSU-MLP model.

This, in turn, results in the CSU-MLP model routinely

predicting high probabilities for rainfall events that are

not actually ‘‘excessive’’ or associated with flash flooding

FIG. 4. Day 1 ensemble 6-h (between 1800 and 0000 UTC) blended mean QPF performance diagrams

(a) exceeding 0.5 in. and (b) exceeding 1 in. Ensembles shown are the HREFv2 (blue), SSEFx (magenta), and

HRRRe (cyan).
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in New Mexico (Herman and Schumacher 2018a,c). In

the FFaIR Experiment, this can result in forecasters

systematically ignoring high probabilities in this region,

even when high probabilities are warranted. Although

these biases are not a problem with the machine-

learning technique per se, this result is still undesir-

able, and other precipitation products are being used for

training of the CSU-MLP model to alleviate this prob-

lem in the 2018 FFaIR Experiment. At the high risk

threshold, only the experimental ERO have any issu-

ances, all of which were associated with Tropical Storm

Cindy (not shown).

c. Verification of the FFaIR experimental forecasts
and first-guess field

As discussed in sections 2b and 3b, the ERO is a

probabilistic forecast product consisting of four risk

categories. The calibration of the ERO and CSU-MLP

probabilities are assessed to determine if average ob-

served relative frequencies from the UFVS match fore-

cast probabilities (Wilks 2011). Throughout the FFaIR

Experiment, the average fractional coverage of flooding

occurrence or proxy within 40km of a point is computed

for each ERO risk category. On average, fractional cov-

erage approximates for bins of average forecast proba-

bility, allowing for anERO reliability plot (Wilks 2011) to

be created.A forecast is considered reliable if the average

fractional coverage falls within the probabilistic definition

for each ERO category (e.g., in the case of the marginal

category, the average fractional coverage must be be-

tween 5% and 15%).

Figure 8 shows the reliability for the CSU-MLP, op-

erational ERO, and experimental ERO using the

UFVS. For each ERO risk category, the horizontal

green or red line represents the lower or upper bound,

FIG. 5. Issuance probabilities (%) of marginal risk forecasts

throughout the FFaIR Experiment period for (a) the operational

ERO, (b) the FFaIR Experiment ERO, and (c) the CSU-MLP

first-guess field.

FIG. 6. As in Fig. 5, but for slight risk.
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respectively, of the ERO definition. The CSU-MLP

probabilities are calibrated only for marginal instances

of precipitation exceeding FFG (i.e., the current oper-

ational ERO definition), but fails to identify slight,

moderate, and high risk regions. The operational ERO

is calibrated for the marginal and slight categories when

considering FFG exceedances and all observations and

proxies (i.e., the complete UFVS). However, the oper-

ational ERO exhibits fractional coverage that exceeds

60% for the moderate threshold, suggesting that fore-

casters should issue more moderate risks during bor-

derline events or draw larger moderate areas to reduce

fractional coverage. The experimental ERO is cali-

brated using all verification analyzed for all definitions

of the ERO. This suggests that the larger and more

frequent issuances of moderate and high risk categories

in the experimental ERO was advantageous to im-

proving calibration. The experimental ERO may have

also benefited from the experimental guidance that was

available to the FFaIR Experiment participants.

Probabilistic skill for the operational ERO, experi-

mental ERO and CSU-MLP forecasts are assessed by

computing the BS. Using BS, the BSS is computed to

assess potential improvements in the experimental ERO

by referencing the experimental ERO to both the op-

erational ERO (Fig. 9a) and CSU-MLP (Fig. 9b). In this

framework, the experimental ERO improves upon the

referenced ERO if the BSS value is greater than zero. In

general, there is significant day-to-day variability in the

BSS values for the experimental ERO compared to the

operational ERO (Fig. 9a). In bulk, the experimental

ERO improves upon the operational ERO probabilistic

values for day 2 and day 3 verified against everything in

the UFVS. In all cases, there was a greater improvement

in the experimental ERO compared to the operational

ERO during the first two weeks of the FFaIR Experi-

ment. This may have been caused by larger-scale forcing

for precipitation during the two weeks of the FFaIR

Experiment (e.g., Tropical Storm Cindy and synopti-

cally forced MCS activity) before more weakly forced

convection (e.g., monsoon, Gulf Coast, and weaker

MCS activity) prevailed in the latter portion of the

FIG. 7. As in Fig. 5, but for moderate risk.

FIG. 8. Average fractional coverage of Stage IV exceeding FFG

(label FFG Only) or all flooding observations and proxies (label

All) by ERO risk category for the CSU-MLP (green), operational

ERO (blue), and the FFaIR Experiment ERO (purple).
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experiment. The experimental ERO exhibited more

probabilistic skill than the CSU-MLP (Fig. 9b) in 19 of

20 days analyzed, which is unsurprising considering that

the participants were able to incorporate additional

guidance beyond this automated product.

Another metric used to assess skill is the AuROC,

which considers the hit rate versus the false-alarm ratio

(Wilks 2011). Bulk AuROC values (higher values rep-

resenting more skill) are shown for the CSU, opera-

tional ERO, and experimental ERO verified against

both FFG and all of the UFVS (Fig. 10). For day 2, the

CSU forecasts have the lowest skill followed by the

operational ERO and the experimental ERO perform-

ing best. Interestingly, for day 3, the CSU forecasts have

higher AuROC than the operational ERO and even

the CSU day 2 forecast. This result suggests that the

CSU-MLP may be useful as a first-guess field on day 3,

which is a critical time period where WPC forecasters

have no previous day 4 forecast to start from. However,

the experimental ERO forecasts have the highest

AuROC on both days 2 and 3.

When considering the fractional coverage, BSS, and

AuROC values collectively, the experimental ERO

performs slightly better and are slightly more cali-

brated than the operational ERO. These results suggest

that the experimental guidance may have made a slight

but important impact on the experimental ERO. This is

particularly true on day 3, where BSS is consistently

slightly improved (Fig. 9a) and AuROC is about 0.2

greater in the experimental EROs compared to the

operational (Fig. 10). Other than the NAM nest, there is

no guidance from convection-allowing models (CAM)

available to the operationalWPC forecasters that covers

all of the day 2 period. Furthermore, there is no opera-

tional CAM guidance that covers all of the day 3 period.

However, the FFaIR Experiment participants were able

to utilize the day 3 UM-Oper., FV3-CAPS, and FV3-

GFDL CAMs in addition to the non-CAM FV3-GFS.

Hence, the experimental CAM guidance may have in-

creased forecaster confidence, resulting in more fre-

quent issuances of higher risk ERO categories with

larger areas. During the FFaIR Experiment, not all

CAMs are guaranteed to run on any given day, but the

availability of any CAM guidance may have contributed

to the greater probabilistic improvement between the

FFaIR and operational ERO forecasts on day 3 relative

to those on day 2.

4. Discussion and conclusions

The 2017 Flash Flood and Intense Rainfall Experi-

ment was designed to test emerging experimental

products with the goal of improving heavy rain and flash

FIG. 9. Time series of daily BSS for the FFaIR Experiment

ERO referenced to (a) the operational ERO and (b) CSU-MLP

for day 2 verified against FFG (green), day 2 verified against all

flooding observations/proxies (blue), day 3 verified against

FFG only (magenta), and day 3 verified against all flooding

observations/proxies (red).
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flooding forecasts in a collaborative pseudo-operational

environment. Hence, the FFaIR Experiment provided a

critical platform to evaluate products that may be tran-

sitioned from research to operations. This study focused

on the objective verification of guidance (models, en-

sembles, and first-guess products) and forecasts issued

during the FFaIR Experiment. Where applicable, the

objective verification results were compared with the

subjective rating given by the participants.

A simple evaluation of deterministic models and en-

sembles examined in the FFaIR Experiment were per-

formed using Roebber performance diagrams (Roebber

2009). The Met Office Unified Model exhibited the best

quantitative precipitation forecast (QPF) predictive

skill in terms of critical success index for day 2 at all

thresholds analyzed and day 3 at 1 in. (25.4mm), while

the FV3-GFS exhibited the best skill for day 3 at 0.5 in.

(12.7mm; Fig. 2). Subjectively, the HRRR-Exp model

performed best on day 2 (Fig. 3a), and the Unified

Model performed best on day 3 (Fig. 3b). In terms of

ensemble guidance, the experimental Storm-Scale En-

semble Forecast generally had the lowest CSI, with com-

parable CSI values between the HRRRe and HREFv2

(Fig. 4). However, participants subjectively rated the

HRRRe the best and the HREFv2 the lowest, albeit only

with a small difference. (Fig. 3c). Discrepancies between

subjective and objective verification scores were possible,

since participants intuitively evaluated object-oriented

biases. However, participants may have valued certain

object-oriented attributes or geographical locations

differently in comparison with others.

Operational and experimentally issued excessive

rainfall outlooks were compared throughout the dura-

tion of the experiment. Both ERO products highlighted

similar geographical regions (Figs. 5–7), with the ex-

perimental ERO exhibiting significantly greater frac-

tional coverage (by at least a factor of 2) for all

thresholds. It was possible that the experimental guid-

ance increased forecaster confidence, resulting in the

issuance of larger and more frequent higher risk cate-

gories in the FFaIR Experiment, which were more

consistent with the coverage of flooding observations

and proxies. The greatest instances of slight risk issuance

occurred in the Southwest, portions of the Midwest, the

central Appalachians, and along the central Gulf

Coast. The ERO issuances in the Southwest United

States were associated with the monsoon activity dur-

ing the latter half of the FFaIR Experiment, while

portions of theMidwest experienced several mesoscale

convective systems in June and July. Most of the higher

risk activity along the Gulf Coast is associated with

Tropical Storm Cindy while the central Appalachians

experienced a combination of MCS-induced flooding

and the remnants of Cindy.

To assess the probabilistic calibration of the ERO,

average fractional coverage of Stage IV precipitation

exceeding flash flood guidance and all flooding obser-

vations and proxies (i.e., Stage IV exceeding FFG, Stage

IV exceeding 5-yr average recurrence intervals, local

storm reports, and river gauge observations) were in-

cluded in the evaluation. In addition, the calibration of a

new ERO first-guess field called the Colorado State

University Machine-Learning Probabilities method was

evaluated. In general, the operational and experimental

EROs were well calibrated for all risk categories, except

for moderate issuances of the operational ERO, which

fell above the probabilistic definition. The CSU-MLP

produced too many marginal instances and not enough

slight, moderate, and high issuances.

Area under relative operating characteristic and Brier

skill score were used to compare the skill of the exper-

imental ERO, operational ERO, and CSU-MLP. The

experimental ERO generally performed best, with

the operational ERO exhibiting better skill than the

CSU-MLP.Comparison of theEROswith theCSU-MLP

was not necessarily fair since the CSU-MLP was used in

the forecast process to produce the EROs. The improve-

ment in the experimental EROover the operational ERO

was greatest on day 3, and it was possible that the in-

creased availability of experimental convection-allowing

models on day 3 contributed to this improvement.

FIG. 10. Day 2 and day 3 AuROC values for the CSU (green),

operational ERO (blue), and the FFaIR Experiment ERO

(purple) verified against FFG (darker colors) and all flooding ob-

servations/proxies (lighter colors).
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One exception to the improvement of the experimental

ERO over the operational ERO occurred for day 2 is-

suances during weeks 3 and 4, which were dominated by

smaller-scale more weakly forced convective events

than the first two weeks.

Several recommendations were made in the 2017

FFaIR Experiment final report (Perfater and Albright

2017). Relevant to the results presented in this study, it is

recommended that CAMs be run to cover the entire day

3 period operationally (roughly out to forecast hour 72).

Ideally, an ensemble of CAMs would be invoked in the

future for this purpose to evaluate the probabilistic

utility of an ensemble of QPF. The ensemble blended

mean QPF’s analyzed in the FFaIR Experiment were

well received by participants, and there is justification

for a transition of these products to operations.

The CSU-MLP was subjectively scored well by the

participants in the FFaIR Experiment. The final FFaIR

Experiment recommendation was that the CSU-MLP

developers reduce some recurring spatial bias issues,

particularly in New Mexico and Colorado, and reintro-

duce the technique in the 2018 FFaIR Experiment.

The results of the CSU-MLP and other guidance prod-

ucts in the 2018 FFaIR Experiment will be discussed in a

future paper.

Although not presented here, some experimental

products were subjectively evaluated from the National

Water Model. WPC recommended a more rigorous

coupling of hydrologic and meteorological components

to gather a more complete picture of the flash flooding

paradigm. In the future, WPC hopes that a coupled

probabilistic QPF-forced hydrologic output will become

commonplace operationally, with new techniques to

deduce probability of flooding and inundation from

modeled streamflow.
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APPENDIX

List of Acronyms

ARI Average recurrence interval

AuROC Area under relative operating characteristic

BS Brier score

BSS Brier skill score

CAM Convection-allowing model

CAPS Center for Analysis and Prediction of

Storms

CONUS Contiguous United States

CSI Critical success index

CSU Colorado State University

EMC Environmental Modeling Center

ERO Excessive rainfall outlook

ESRL Earth System Research Laboratory

FB Frequency bias

FFaIR Flash Flood and Intense Rainfall

Experiment

FFG Flash flood guidance

FV3 Finite-Volume Cubed-Sphere Dynamical

Core

GFDL Geophysical Fluid Dynamics Laboratory

GFS Global Forecast System

GSD Global Systems Division

HMT Hydrometeorology Testbed

HREFv2 High-Resolution Ensemble Forecast,

version 2

HRRR High-Resolution Rapid Refresh

HRRRe High-Resolution Rapid Refresh Ensemble

HRRR-

Exp

HRRR experimental model

LSR Local storm report

MCS Mesoscale convective system

MLP Machine-Learning Probabilities method

NAM North American Mesoscale Forecast

System

NOAA National Oceanic and Atmospheric

Administration

OU University of Oklahoma

QPF Quantitative precipitation forecasts

SSEFx Storm-Scale Ensemble Forecast

UFVS Unified Flooding Verification System

UM-Oper. Unified Model Operational

WPC Weather Prediction Center
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